
Eventlet 1

Example Chat Server 2

Basic usage 3

Socket Functions 5

Using the Standard Library with Eventlet 5

Communication Between Coroutines 6

Using the Backdoor 6

Integrating Blocking Code with Threads 6

Database Access 7

Hub and Coroutine Library Negotiation 7

Advanced APIs 7

Using Eventlet with Nginx 8

Eventlet
Eventlet is an easy to use networking library written in Python. Eventlet is

capable of supporting a large number of sockets per process by using
nonblocking I/O, cooperatively multiplexing them through a single main loop.
This approach allows for the implementation of massively concurrent servers
which would require prohibitive amounts of memory under a traditional
preemptive multi-threading or multi-process model. However, nonblocking I/O
libraries such as asyncore or twisted can be difficult for programmers to use
because they require the use of continuation passing style. This means code
must be broken up into functions which initiate operations, and functions which
will be called when the operation is complete, known as "callbacks."

Eventlet avoids these difficulties by using a coroutine library called greenlet.
Coroutines allow Eventlet to cooperatively reenter the main loop whenever an I/
O operation is initiated, switching back to the original coroutine only when the
operating system indicates the operation has completed. This means code
written using Eventlet looks just like code written using the traditional multi-

threading or multi-process model, while avoiding the locking problems
associated with preemption and requiring very little memory.

Example Chat Server
Let's look at a simple example: a chat server.

The server shown in Listing 1 is very easy to understand. If it was written using
Python’s threading module instead of eventlet, the control flow and code layout
would be exactly the same. The call to api.tcp_listener would be replaced with
the appropriate calls to Python’s built-in socket module, and the call to
api.spawn would be replaced with the appropriate call to the thread module.
However, if implemented using the thread module, each new connection would
require the operating system to allocate another 8 MB stack, meaning this
simple program would consume all of the RAM on a machine with 1 GB of
memory with only 128 users connected, without even taking into account
memory used by any objects on the heap! Using eventlet, this simple program
should be able to accommodate thousands and thousands of simultaneous
users, consuming very little RAM and very little CPU.

from eventlet import api

participants = []

def read_chat_forever(writer, reader):
 line = reader.readline()
 while line:
 print "Chat:", line.strip()
 for p in participants:
 if p is not writer: # Don’t echo
 p.write(line)
 line = reader.readline()
 participants.remove(writer)
 print "Participant left chat."

try:
 print "ChatServer starting up on port 3000"
 server = api.tcp_listener(('0.0.0.0', 3000))
 while True:
 new_connection, address = server.accept()
 print "Participant joined chat.

Listing 1: chatserver.py

What sort of servers would require concurrency like this? A typical Web
server might measure traffic on the order of 10 requests per second; at any
given moment, the server might only have a handful of HTTP connections open
simultaneously. However, a chat server, instant messenger server, or
multiplayer game server will need to maintain one connection per connected
user to be able to send messages to them as other users chat or make moves in
the game. Also, as advanced Web development techniques such as Ajax, Ajax
polling, and Comet (the “Long Poll”) become more popular, Web servers will
need to be able to deal with many more simultaneous requests. In fact, since
the Comet technique involves the client making a new request as soon as the
server closes an old one, a Web server servicing Comet clients has the same
characteristics as a chat or game server: one connection per connected user.

Basic usage
Most of the APIs required for basic eventlet usage are exported by the

eventlet.api module. We have already seen two of these in listing one:
api.tcp_listener, for creating a TCP server socket, and api.spawn, for spawning a new

Figure 1: chatserver.py Flowchart

coroutine and executing multiple blocks of code conceptually in parallel. There
are only a few more basic APIs: connect_tcp for creating a TCP client socket,
ssl_listener and connect_ssl for creating encrypted SSL sockets, and sleep, call_after,
and exc_after to arrange for code to be called after a delay. Let’s look at these in
detail.

spawn(function, *args, **keyword)
Create a new coroutine, or cooperative thread of control, within which to

execute function. The function will be called with the given args and keyword
arguments and will remain in control unless it cooperatively yields by calling a
socket method or sleep. spawn returns control to the caller immediately, and
function will be called in a future main loop iteration.

sleep(time)
Yield control to another eligible coroutine until at least time seconds have

elapsed. time may be specified as an integer, or a float if fractional seconds are
desired. Calling sleep with a time of 0 is the canonical way of expressing a
cooperative yield. For example, if one is looping over a large list performing an
expensive calculation without calling any socket methods, it’s a good idea to
call sleep(0) occasionally; otherwise nothing else will run.

call_after(time, function, *args, **keyword)
Schedule function to be called after time seconds have elapsed. time may be

specified as an integer, or a float if fractional seconds are desired. The function
will be called with the given args and keyword arguments, and will be executed
within the main loop’s coroutine.

exc_after(time, exception_object)
Schedule exception_object to be raised into the current coroutine after time

seconds have elapsed. This only works if the current coroutine is yielding, and

is generally used to set timeouts after which a network operation or series of

from eventlet import api, httpc

def read_with_timeout():
 cancel = api.exc_after(30, api.TimeoutError())
 try:
 httpc.get(‘http://www.google.com/’)
 except api.TimeoutError:
 print “Timed out!”
 else:
 cancel.cancel()

Listing 2: exc_after.py

http://www.google.com
http://www.google.com

operations will be canceled. Returns a timer object with a cancel method which
should be used to prevent the exception if the operation completes
successfully. See Listing 2.

named(name)
Return an object given its dotted module path, name. For example, passing

the string “os.path.join” will return the join function object from the os.path
module, “eventlet.api” will return the api module object from the eventlet
package, and “mulib.mu.Resource” will return the Resource class from the
mulib.mu module.

Socket Functions
Eventlet’s socket objects have the same interface as the standard library

socket.socket object, except they will automatically cooperatively yield control to
other eligible coroutines instead of blocking. Eventlet also has the ability to
monkey patch the standard library socket.socket object so that code which uses it
will also automatically cooperatively yield; see Using the Standard Library with Eventlet.

tcp_listener(address)
Listen on the given address, a tuple of (ip, port), with a TCP socket. Returns a

socket object on which one should call accept() to accept a connection on the
newly bound socket.

connect_tcp(address)

Create a TCP connection to address, a tuple of (ip, port), and return the
socket.

ssl_listener(address, certificate, private_key)
Listen on the given address, a tuple of (ip, port), with a TCP socket that can do

SSL. certificate and private_key should be the filename of the appropriate certificate
and private key files to use with the SSL socket.

connect_ssl(address)
TODO: Not implemented yet. The standard library method of wrapping a

socket.socket object with a socket.ssl object works, but see Using the Standard Library with
Eventlet to learn about using wrap_socket_with_coroutine_socket.

Using the Standard Library with Eventlet
Eventlet’s socket object, whose implementation can be found in the

eventlet.greenio module, is designed to match the interface of the standard library
socket.socket object. However, it is often useful to be able to use existing code
which uses socket.socket directly without modifying it to use the eventlet apis. To

do this, one must call wrap_socket_with_coroutine_socket. It is only necessary to do
this once, at the beginning of the program, and it should be done before any
socket objects which will be used are created. At some point we may decide to
do this automatically upon import of eventlet; if you have an opinion about
whether this is a good or a bad idea, please let us know.

 Some code which is written in a multithreaded style may perform some
tricks, such as calling select with only one file descriptor and a timeout to
prevent the operation from being unbounded. For this specific situation there is
wrap_select_with_coroutine_select; however it’s always a good idea when trying any
new library with eventlet to perform some tests to ensure eventlet is properly
able to multiplex the operations. If you find a library which appears not to work,
please mention it on the mailing list to find out whether someone has already
experienced this and worked around it, or whether the library needs to be
investigated and accommodated. One idea which could be implemented would
add a file mapping between common module names and corresponding
wrapper functions, so that eventlet could automatically execute monkey patch
functions based on the modules that are imported.

TODO: We need to monkey patch os.pipe, stdin and stdout. Support for
non-blocking pipes is done, but no monkey patching yet.

Communication Between Coroutines
channel
event
CoroutinePool
Actor
TODO

Using the Backdoor
TODO

Integrating Blocking Code with Threads
 In the language of programs which use nonblocking I/O, code which takes

longer than some very small interval to execute without yielding is said to
“block.”

tpool
TODO

Database Access
 Most of the existing DB API implementations, especially MySQLdb, block in

C. Therefore, eventlet’s monkey patching of the socket module is not enough;
since the database adapter does not use the python socket methods, calling
them will block the entire process. Thus, any usage of them must call these
blocking methods in the thread pool. To facilitate this, eventlet’s DB pool
module provides some convenient objects.

dbpool
TODO

Hub and Coroutine Library Negotiation
 Eventlet performs multiplexing using the standard library select.select,

select.poll, or the third-party libevent module, which in turn supports kqueue on
FreeBSD and OS X and epoll on Linux. Eventlet will try to automatically determine
what is installed and use what it thinks will provide best performance. Eventlet
can also run inside of the nginx Web server using the mod_wsgi package for
nginx. Using the nginx mod_wsgi package provides by far the best performance
for serving HTTP; it almost seems impossible that Python should be able to
achieve this level of performance, but it’s true. See Using Eventlet with Nginx.

get_default_hub
use_hub
get_hub
TODO

Eventlet can also use several different coroutine implementations; the
original is the greenlet package from py.lib. Eventlet can also use the cheese
shop’s packaging of greenlet; easy_install greenlet is generally the easiest way to get
greenlet installed and running. Eventlet can also run inside of stackless-pypy
without threads, and on Stackless Python 2.5.1, although it runs with an inferior
emulation of greenlet implemented using tasklets, and is slower than Eventlet
running on a plain python with the greenlet package installed. Another future
candidate for experimentation is the libCoroutine package from the Io language,
although it would need to be wrapped for Python first.

Advanced APIs
TODO

trampoline(fd, read=None, write=None, timeout=None)
Suspend the current coroutine until the given socket object or file descriptor

is ready to read, ready to write, or the specified timeout elapses, depending on
keyword arguments specified. To wait for fd to be ready to read, pass read=True;

ready to write, pass write=True. To specify a timeout, pass the timeout argument
in seconds. If the specified timeout elapses before the socket is ready to read or
write, TimeoutError will be raised instead of trampoline returning.

Using hub.switch() (you have to arrange to have your coroutine called back,
otherwise it will never run again and just leak garbage)

Using tracked_greenlet and subclassing GreenletContext (need to do an
example)

Using Eventlet with Nginx
TODO instructions for installing Nginx and mod_wsgi

In the nginx.conf file, set up a location with the wsgi_pass directive pointing
to the nginx_mod_wsgi support module. TODO how to configure which wsgi
application runs inside this? An env variable which specifies the name of the
app?

 location / {
 wsgi_pass /path/to/eventlet/support/nginx_mod_wsgi.py;
 }

