
eventlet

eventlet
coroutines — flexible efficient control flow

greenlet

non-blocking i/o — efficient network i/o

select/poll/epoll

threads — switch between async and sync

queues/pipes

main

subroutine(1, 2) subroutine

subroutine(3, 4) subroutine

main

coroutine2.switch(3, 4) coroutine2

main.switch('hello')

coroutine.switch(1, 2) coroutine

coroutines

subroutine:

continue by
returning to caller

coroutine:

continue by calling
another coroutine

greenlet

$ python coros.py
2
4
16
256
65536

non-blocking i/o
blocking i/o:

each “thread of control” can read or write on
one file descriptor at a time

process, thread

non-blocking i/o:

reads and writes are multiplexed using
select, poll, epoll, kqueue, etc.

blocking i/o

non-blocking i/o

eventlet: coroutines +
non-blocking i/o

main loop (Hub) is responsible for calling i/o
multiplexer function and scheduling timers

eventlet.greenio provides a socket object which
registers with the Hub and cooperatively
switches instead of blocking

code looks blocking, but all network i/o is
non-blocking

eventlet.greenio
socket.read(...)

while not enough data:

trampoline(socket, read=True)

api.get_hub().add_descriptor(

 socket, read=api.get_current().switch)

self.readers[socket] = callback
api.get_hub().switch()

greenio part 2

ready_to_read, ready_to_write, exc = select(...)

for read in ready_to_read:

 self.readers[read].switch()

socket.recv(4096)

once all requested data has been read, the
socket.read(...) returns data

eventlet echo server

eventlet flowchart

integration with
blocking code

eventlet uses a cooperative single thread
blocking code must cooperate
eventlet provides cooperative:

sockets
pipes
processes

eventlet.tpool can mix blocking code with
cooperative coroutines using a threadpool

threadpool details
to call a function in a threadpool, eventlet puts
the function, arguments, and current coroutine
in a request queue
threads in the pool block on the request queue
the function is executed in the thread
the result is put in the response queue
a byte is written into a pipe which is being read
by the main thread
the result is sent to the original coroutine

naive threadpool

spawning

spawning

http server

wsgi server

multiple network i/o processes

multiple wsgi worker threads

graceful code reloading

process model options

single i/o process, multiple threads

good for stateful applications

multiple i/o process, single thread

good for comet applications

multiple i/o process, multiple thread

good for the majority of applications

spawning controller

main spawning
process

binds network socket

forks network i/o
processes

multiple i/o processes
can take advantage of
multiple cpus

controller

i/o process

spawning child

i/o processes use
eventlet to scale to
many keepalive sockets

http protocol
implementation in
eventlet.wsgi

dispatches to wsgi
applications in
threadpool

i/o process

wsgi thread

controller

graceful reloading

send controller sighup

controller forks new
processes with new code

existing processes stop
accepting and complete
outstanding requests,
then exit

controller

i/o process

i/o process
XXX

using spawning

with paster serve:

[server:main]

use = egg:Spawning

command line:

spawn my_package.my_module.wsgi_app

spawn options
spawn wsgi_app [wsgi_middleware, ...]

--port=8080

--host=127.0.0.1

--processes=4

--threads=8

--threads=0 will use eventlet cooperation
monkeypatching

